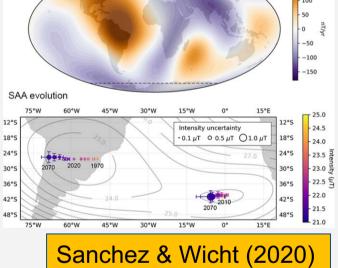


B. Fluche¹, C. Stolle^{1,2}, J. Baerenzung², J.L. Chau³, E. Kronberg⁴, J. Kusche⁵, J. Vogt⁶: 1: GFZ Potsdam 2: Universität Potsdam 3: Leibniz Institut für Atmosphärenphysik Kühlungsborn 4: LMU München. 5: Universität Bonn 6: Jacobs University Bremen

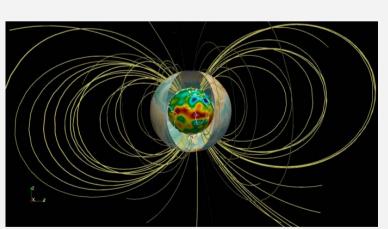
DFG priority programme 1788 "Dynamic Earth": A joint interpretation of geomagnetic, geodetic and ionosphere/thermosphere data from low-orbit satellite missions


About SPP 1788

The system "Earth" changes continuously. Variations of the Earth's interior, the atmosphere, the oceans, and near-Earth space give rise to changes in global potential fields, particularly in Earth's magnetic and gravity fields. The underlying processes can be identified and studied through monitoring and analysis of fundamental geomagnetic and gravity parameters.

geomagnetic field models by dynamo simulations

Improved modelling techniques – better and more realistic results for the dynamo equations

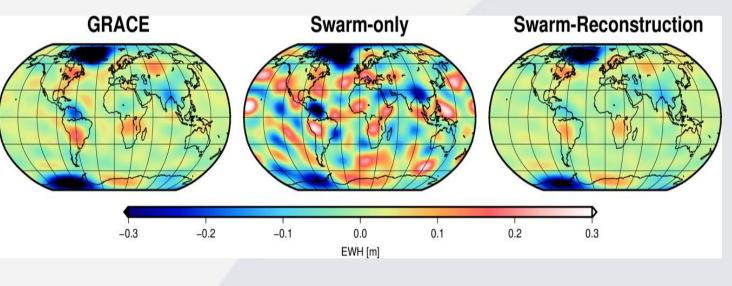


Kalmag model – candidate for IGRF-13

New approach to derive geomagnetic field model from direct measurements of the Earth's magnetic field with CHAMP and Swarm data

Using Kalman filter method to predict further spatio-temporal development

Link to model of Potsdam university: https://ionocovar.agnld.unipotsdam.de/Kalmag/



Baerenzung, Holschneider (2021)

More information about the Swarm mission:

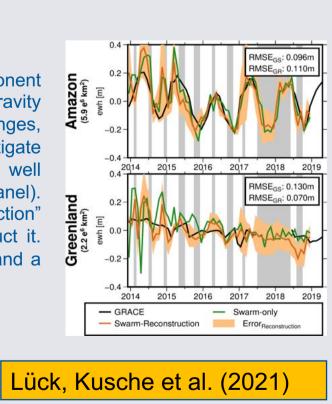
earth.esa.int/eogateway/missions/swarm

In this subject area the global variations of mass and mass balances are investigated, as well as interaction and exchange mechanisms (hydrological cycle, ice melting in the polar regions, sea-level fluctuations, groundwater, relationship with anthropogenic influences, tides of oceans and atmosphere), length-of day variation, and high-resolution models of the gravity field.

We use the method of a Principal Component Analysis and combine the existing Swarm gravity data with the dominant patterns of mass changes, determined from GRACE. Therefore, we investigate the global spatial resolution (upper panel) as well as mass changes in selected areas (right panel). Our new solution we call "Swarm-Reconstruction" as we use the GRACE patterns to reconstruct it. This solution has a significantly lower noise and a higher spatial resolution.

More information about all projects in SPP1788:

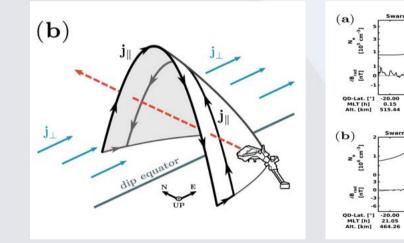
www.spp-dynamicearth.de/en


Swarm mission and satellites

Satellite A + C:

- Current altitude ca. 450km
- **Satellite B:**
- Current altitude ca. 500km
- Multi-instrument mission
- (magnetic and electric field, plasma density and temperature, GPS (topside-TEC), accelerometer)

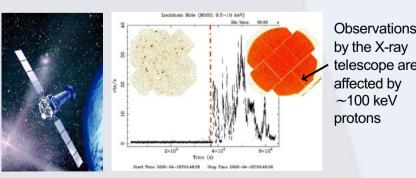
Gravity


Closing the 11-months-gap between GRACE/GRACE-FO

Ionospheric Currents

This topical area addresses E-region ionospheric current systems and field-aligned currents (FACs) at higher latitudes, coupling of the ionosphere and magnetosphere, contributions of ionospheric and field-aligned currents to the energy budget of the atmosphere, near-Earth verification of magnetospheric currents

Equatorial Plasma Depletions in the lonosphere

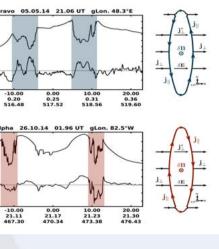


Field aligned curremts (FAC) flow along the edges of the EPD zones in internemispherical direction

Magnetospheric protons contaminate XMM-Newton X-Ray telescope

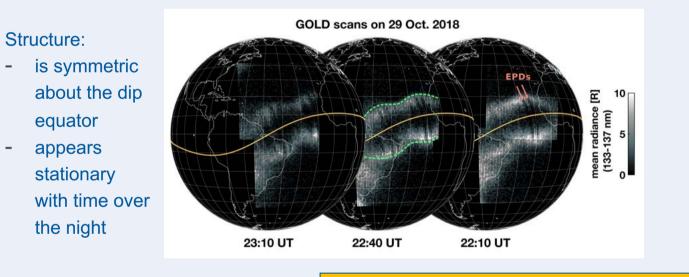
Using a machine learning approach we derive a model to predict the contamination and learn physics behind

Future missions should minimize observations associated with high solar wind speed and avoid closed magnetic field lines.

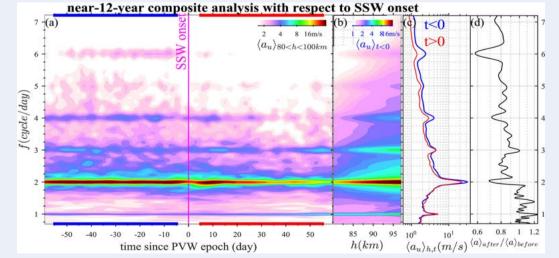

Funded by

Forschungsgemeinschaft

German Research Foundation


Rodriguez-Zuluaga et al. (2020)

Ionosphere/Thermosphere Coupling


This subject area is devoted to the quantification of solar contributions (EUV, solar wind) and the influence of the lower and middle atmosphere (waves and tides) on the variability of the upper atmosphere, the interaction between ionospheric plasma and neutral gas, E- and F-region ionospheric currents from high to low latitudes, understanding and predicting ionospheric and atmospheric irregularities from equatorial to polar latitudes including signal disturbances for communication and navigation systems.

> A synoptic-scale wavelike feature of the nighttime equatorial ionization anomaly

Rodriguez-Zuluaga et al. (2021)

The impact of a SSW onset on the higher solar tide harmonics

(a) Composite analysis of altitude-averaged (over 80–100 km) wavelet spectrum of the zonal wind over Juliusruh with respect to SSW onsets referring to the PVWs. (b) Wavelet spectrum averaged in the time window indicated by the blue lines before the onset in (a). (c) Temporal average of (a) within the time window indicated by the blue and red lines in (a). (d) Ratio between the red and the blue lines in (d).

He, Chau et al. (2020)

HELMHOLTZ

